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ABSTRACT 

Cartilage is a sensitive tissue prone to damage with sports and aging. Degenerative joint diseases are among the most profound in 

limiting quality of life and daily activities. Biological therapies have become available to potentially treat osteoarthritis and focal 

chondral defects. However, there remains no efficient way to regenerate native hyaline cartilage. Stem cell therapy and bioengineering 

constitutes a promising field which may transform our paradigms in orthopaedics. This review provides an overview of the current 

status and efficacy of stem and progenitor cell therapies which include cultured and non-expanded sources such as bone marrow, 

adipose tissue, synovium and peripheral blood. The purpose of this review is to summarize the reported potential of adult stem cells 

therapies focusing on focal chondral defects (FCD) and osteoarthritis (OA).  
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INTRODUCTION 

 Cell based therapies are exponentially emerging as promising treatments for many musculoskeletal conditions affecting 

athletes and aging populations. 
[1-3]

 Stem and progenitor cell therapies provide a potential for clinical benefit through mechanisms of 

tissue regeneration or immunomodulation.
[4-9]

 Fertile fields for stem cell use within orthopaedics include focal chondral lesions, 

osteoarthritis (OA), fracture healing, and soft tissue lesions involving tendon, muscle and ligaments. 

Progenitor cells include any cell that can proliferate to form progeny and can differentiate into a derived tissue. Stem cells are 

a special subset of progenitor cells which have “self- renewal capacity”. 
[10-14]

 Self - renewal is the process where a cell divides 

asymmetrically, producing two daughter cells. One daughter cell is identical to the initial cell and remains available for another 

asymmetrical “self-renewing” cell division. The second cell, a progenitor cell which, unlike the stem cell proceeds to divide and 

differentiate. Progenitor cells are far more prevalent than stem cells in any tissue. Often the term “stem cell” is used incorrectly to 

describe both stem and progenitor cells as a whole. 
[15, 16]

 

Use of an accurate standardized nomenclature is crucial for understanding the biological behavior of cells in vivo and in vitro, 

and improves science communication. Stem cells can be classified in several ways: 1) autologous or allogenic, 2) adult, embryonic or 

IPSCs (induced pluripotent stem cells) and, 3) native (tissue resident) or culture expanded. The purpose of this review is to assess 

adult stem cells utility within orthopaedics with a special focus on focal chondral lesions and OA, stating sources, safety, efficacy and 

subjective and objective outcomes.
[17]

 

Embryonic stem cells (ESCs) have pluripotent differentiating potential, towards all tissues, such as: ectoderm, endoderm or 

mesoderm derived. 
[14]

 They are obtained from the embryo in its first stages 
[18, 19]

 and an often time involves ethical issues 
[18] 

and risk 



of oncogenic transformation. 
[20, 21]

 Recent advances in genetic manipulation of adult fibroblasts, mainly from dermis, and fetal cells 

have generated induced pluripotent stem cells (IPSCs) through viral and non - viral gene reprogramming mechanisms. 
[22-26]

 They are 

also pluripotent in nature, and since they can be obtained from adult tissue, they are not associated with the ethical concerns 

surrounding ESCs. In contrast, adult stem cells are capable of differentiating into one or more embryonically-related tissue 

phenotypes; they can be easily obtained from several tissues, they do not present ethical issues and are usually not associated with the 

concern of malignant transformation.
[27]

  

Adult Stem and Progenitor Cells Nomenclature 

Many terms have been used to describe the same adult stem and progenitor cell populations in native tissue. In an approach to 

provide clarification the term Connective Tissue Progenitors (CTPs) has been proposed. CTPs include the entire heterogeneous native 

(tissue resident) population of stem and progenitor cells, with the potential to be activated and generate progeny that can contribute to 

one or more connective tissues (e.g., bone, fat, cartilage, fibrous tissue, blood and muscle).
[10, 11, 28]

 CTPs are resident in and can be 

harvested from bone marrow, fat, cartilage and other tissues. However, CTPs in each tissue often have different niches, biological 

attributes and potential. The term CTP recognizes that these tissue-derived cells are not a uniform population, and until detailed 

characterization is achieved, CTPs may only be detectable by their capacity to proliferate and form colony on a 2D surface or in a 3D 

viscous medium colony forming unit (CFU) assay. 
[10, 11, 28]

 

 Conversely, culture expanded cells differ from native and minimally manipulated cells. Culture expanded cells provide more 

homogenous populations and greater numbers than native tissue derived cells. However, cell attributes change quickly in culture. The 

most promoted and commercialized example of culture expanded cells are mesenchymal stem cells (MSCs).
[29]

 MSCs are culture 

expanded and plastic adherent adult cells that to be classified as cells which retain the capacity for trilineage differentiation (cartilage, 

bone or adipose tissue), 
[30-32]

 they must also express the following set of surface markers CD105, CD73 and CD90, and lack 

expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules 
[33] 

(Table 1).  

The International Society for Cellular Therapy (ISCT) developed these criteria to define MSCs. 
[29, 33]

 Without these proven 

characteristics the MSC term should not be used. The MSC definition although ideal, has helped bring order to the indiscriminate use 

of “MSC” to describe all culture-expanded fibroblasts regardless of characterization. However recent data demonstrates that a MSC 

population, that meets all these criteria, can vary widely in biological potential. 
[34]

 

 To date no specific set of markers identify all CTPs from native tissues. Nevertheless, the concentration, prevalence and 

biological potency can be estimated with in vitro colony forming unit (CFU) assays. CTPs assays have been enhanced dramatically by 

using, criteria incorporated into the American Society for Testing Materials (ASTM) International standard: “Automated Colony 

Forming Unit (CFU) Assays—Image Acquisition and Analysis Method for Enumerating and Characterizing Cells and Colonies in 

Culture” for use with automated system for image analysis. 
[35]

 Traditionally methods of colony counting using subjective “skilled 

“observer have been shown to be subject to wide variation. 
[36]

 



Freshly obtained tissue (e.g. Bone Marrow Aspirate - BMA) contains CTPs, but the prevalence and function of these CTPs 

are not known without CFU assay. Therefore, if unprocessed and unmeasured cells from BMA are used, they should be described on 

the most quantitative measured metric, for example, mixed tissue derived nucleated cells (MTDNCs) 
[37]

, or mixed bone marrow 

derived nucleated cells (MBMDNCs).  

Since CTPs are the heterogeneous population of stem and progenitor cells resident in native tissue, they include the 

proliferative cells from which culture expanded MSCs are derived. However, the attributes of colony founding CTPs are distinct from 

the attributes in the definition of MSCs from the International Society for Cellular Therapy (ISCT). Both stem and progenitor cells are 

believed to be in almost every tissue in the body and have the ability to migrate towards sites of injury and neoplasm through 

chemokines. 
[38-42]

 These assist within tissue regeneration either directly through differentiation into adult cells or indirectly through 

cytokines, growth factors, chemokines for immunomodulation, stimulating angiogenesis, and recruiting tissue specific progenitor 

cells, in order to create a regenerative microenvironment.
[43-46] 

Stem Cells and Progenitor Cell Sources 

 Native stem and progenitor cells (CTPs) can be isolated from all connective tissues that contain CTPs, such as: bone marrow, 

bone, adipose, synovial membrane, peripheral blood and periosteum. 
[47-50]

 The cells obtained from each tissue source, vary including 

intrinsic differences in proliferation and differentiation capacity towards certain lineages.
[51]

 

It has been reported that better outcomes on grafts survival are achieved when harvesting the cells from the same or 

neighboring tissue from the one they will be used to regenerate.
[52]

 Special attention to the graft’s fate should be taken into account 

since it may be affected depending on the harvesting site and characteristics. 

 When culture expansion is performed, culture supplementation with growth factors assists MSC differentiation towards any 

of the three lineages 
[53-55] 

(Table 2).  

 

Bone Marrow derived Progenitor Cells 

Bone marrow is one of the most common sources for harvesting stem and progenitor cells, usually by iliac crest aspiration. 

CTPs account for a small population within the bone marrow. CTPs concentration averages from 1,000 to 2,000 CTPs/ml of aspirate, 

with an estimated prevalence between 1x10
-4

 to 1x10
-6

 cells
 [56]

, depending on patient variables and the aspiration technique.
[57-60]

 Bone 

marrow aspirate has been one of the most common sources of cells used in therapy due to its accessibility for surgeons, and the 

extensive studies done upon these. 
[61-64]

 Optimal technique stipulates that less than 2-4 ml aspirate is taken per site. Depending on the 

total volume needed, different numbers of bone perforations may be required. Inserting the trochar deep into the ilium, aspirating 2-4 

ml, retracting the needle 5 mm and aspirating more, and repeating this step allows for the harvesting of more stem cells. Additional 

bone perforations may be required to increase the total volume of the bone marrow harvest. This increases the yield of CTPs 

harvested, by limiting hemodilution from peripheral blood. 
[57, 58, 65, 66]

 If aspirating 10 ml at once, this will drop CTPs concentration by 



2 – 4 folds. 
[58]

 Processing can increase both the concentration and prevalence of CTPs, by removing RBC (red blood cells), serum and 

non-CTPs from a mixed population. 
[59, 67]

 

There are different alternatives to achieve a higher number of stem/progenitor cells from the BMA sample: 1) in vitro culture 

expansion to obtain BM-MSCs, or 2) processing techniques, like density separation. Currently, preparations of autologous 

concentrated bone marrow aspirate (BMAC) are used directly intraoperatively to process BMA for implantation with minimal 

manipulation.
[68]

 A BMAC shortcoming is the heterogeneous cell population found in its preparation, including endothelial, 

hematopoietic and inflammatory cells. Preparations also vary widely between individuals and due to age and sex 
[60, 69-72]

, and by the 

site of aspiration within a same individual. Density separation methods to prepare BMAC often require at least 60 ml of BMA from 

the anterior or posterior iliac crest, but this is not taken from one site. The BMA is ideally aspirated as multiple 2-4 ml samples (to 

reduce hemodilution) through cortical perforations, going deeper into the medullary cavity using the same skin incision.
[66] 

This is 

done in a perpendicular technique (to the iliac crest): having the needle in the medullary cavity, advancing every 5-10 mm using the 

obturator and in a fan-like projection, once or twice followed by aspiration,  allows two or three aspirates through a same cortical 

perforation, and then move into a new cortical perforation. Another approach is the parallel technique (to inner and outer tables of the 

iliac crest): advancing the needle every 5-10 mm using the obturator between both tables and in a fan – like projection, allows taking 3 

or more aspirates 
[10]

. Centrifugation (density separation) is used to remove platelets, granulocytes and red blood cells. This 

concentrates the number of cells and CTPs, therefore the cells that can be used intraoperatively
 [66] 

(Figure 1). 

 

Adipose tissue 

Another common source of stem and progenitor cell therapy is adipose tissue. 
[73, 74]

 It is mainly harvested from aspirates or 

liposuction, or surgical removal (e.g., a recently emerging source is the infrapatellar fat pad). 
[75-77]

 It is far less cellular than bone 

marrow aspirate, but the CTPs prevalence is higher, averaging 1 in 4,000 cells. Some authors consider adipose to be an attractive and 

easily available reservoir for stem cell therapy.
[78]

 However, adipose derived colony founding CTPs and culture expanded cells present 

different patterns of behavior, cell proliferation and differentiation, compared to CTPs found in bone marrow. Therefore a better 

characterization is needed.
 [73]

 These variables are in turn affected with the same intrinsic factors mentioned before, such as 

individuals, age and sex. It has been reported that ASCs (adipose stem cells) have reduced chondrogenic and osteogenic capacity 

under standard culture conditions 
[79-82]

, in favor of a more robust differentiation towards muscle cells or cardiomyocytes. 
[83]

 This may 

be in part, due to endogenous reduced expression of BMP (bone morphogenetic protein) mRNA for subtypes 2, 4 and 6, and lacking 

expression of TGF-β- receptor-1 (transforming growth factor). 
[79]

 BMPs promote chondrogenic differentiation and cartilage 

production and have autocrine stimulation on other MSCs for producing the same factors. Using pellet cultured ASCs under 

chondrogenic factors, chondrogenic differentiation and collagen formation takes place, with TGF- β and BMP-6 being the strongest 

combination. 



Different names lead to confusion when referring to adipose tissue derived stem cells. The International Federation for 

Adipose Therapeutics and Science (IFATS) stated that adipose derived stem cells (ASCs) should be the term to adopt when addressing 

the isolated culture expanded, plastic adherent and multipotent stem cells. 
[84]

 There are many subcutaneous white adipose tissue 

depots for stem cell recovery: arm, thigh, abdomen and breast. 
[85]

 The standard sequence consists upon tumescent lipoaspirate; 

enzymatic digestion follows using collagenase, trypsin, dispase, among other enzymes in varying combinations, under determined 

time (30 to 60 min) and temperature (37
°
C). 

[86]
 Once enzymes are neutralized, centrifugation follows, allowing the separation of the 

floating mature adipocytes from the stromal vascular fraction (SVF), a heterogeneous cellular population consisting of red blood cells, 

fibroblasts, endothelial cells, lymphocytes, pericytes, monocytes, adipose stromal cells, hematopoietic stem cells and progenitor cells. 

[87, 88]
 Finally, SVF cells are seeded into culture, and after further purification through washing and culture expansion steps in media, 

similar to the ones used with BM-MSCs, in order to deplete most of hematopoietic cells, ASCs can be obtained. The quantity used 

also varies from 5,000 to 1,500,000/ml of tissue collected. 
[89]

 Different methods were proposed for extracting ASCs. For instance 

ultrasound - assisted liposuction appeared to be promising as compared to standard tumescent liposuction, but further studies showed 

that stem cell viability and proliferative capacity seemed to be decreased with these processing methods. 
[90]

 

ASCs are similar to BM-MSCs, but exhibit different attributes and behavior. First, the differentiation potency tends towards 

muscle tissue. Second, the immunophenotype is slightly different with a set of markers above 90% identical 
[75, 84, 91-93] 

(Table 1).  

Synovium 

 Synovium derived stem cells (SDSCs) are increasingly recognized as a viable option when aiming for cartilage repair. 
[94]

 

Comparative human and animal studies have shown that between adipose, muscle, bone marrow, periosteum and synovium derived 

adult stem cells; although ranging from 1,000 -30,000 stem cells/ml of tissue collected 
[89]

, synovium has the highest yield. 
[95]

 In terms 

of differentiation potential it has been reported to have greater adipogenic and chondrogenic potential than BM-MSCs. 
[95-97]

 

After culture expansion and isolation of SDSCs, these cells present identifiable set of markers with interesting 

immunophenotype subpopulations that reflect their different chondrogenic potential and familiarity to BM-MSCs 
[97, 98] 

(Table 1).  

The knee is the most common studied site for harvesting SDSCs. The standard procedure consists of obtaining synovium 

with subsynovial tissue through arthroscopy, followed by enzymatic digestion with a collagenase/dispase solution at 37
°
C for 3 hours, 

and finally filtering the cells through a nylon filter to yield single-cell suspensions. These are then cultured in different media 

depending on the desired adult tissue. 
[99]

 

Peripheral blood  

Peripheral blood mononuclear cells (PBMCs) 
[100] 

or peripheral blood progenitor cells (PBPCs) 
[101]

 give new perspectives on 

stem cell therapy, which cannot be underestimated, as they are involved in tissue healing of many organs. 
[102-104]

 

PBMCs are a heterogeneous cell population harvested from fresh whole blood.
[105]

 A common technique is as follows: venous 

blood sample is collected and centrifuged, and nucleated cells from the buffy coat layer can be frozen and stored for later use or 

culture expanded. When freshly collected, flow cytometry for PBMCs shows 90 % expression for hematopoietic markers CD34 and 



CD45, and negative for MSC set of markers. Peripheral blood does not contain CTPs or MSC-like cells under normal circumstances. 

These are embedded in niches in the bone marrow, subject to low oxygen levels. CTPs can be present in the blood stream after trauma 

or marrow stimulation.
[106]

 

Comparative studies have shown different growth patterns and sets of markers when culturing human PBMCs in different 

oxygen tension conditions 
[105] 

(Table 1). Under hypoxic conditions, similar to their bone marrow niches, they expressed more than 

90% MSCs markers and maintained a trilineage differentiating potential for all three chondrogenic, osteogenic and adipogenic tissues. 

[105]
 This phenomenon reflects a potential use for cartilage repair, which is hypoxic by nature. On the contrary, under normoxic 

conditions, the PBMC rendered macrophage-like adherent cell population expressing less than 50% of MSCs markers. 
[105]

 

Another approach employed for harvesting these cells with a higher yield, involves initiating a week prior to the blood drawn 

a series of subcutaneous administration of human granulocyte colony-stimulating factor (G-CSF) to the patient, which regulates and 

promotes the release of neutrophils and monocytes from the bone marrow into the bloodstream, increasing the circulating 

concentration of PBMCs. These growth factors mobilized PBMCs are collected by an automated cell separator (aphaeresis) using a 

central or peripheral venous access. 
[101, 107-109]

 In healthy adults, depending on the protocols used, the yield averages 2 – 5 x 10
6 

CD 

34
+
 cells per kg of patient’s body weight.

[110, 111]
 

When PBMCs are separated into its different cell components in an attempt to isolate the stem and progenitor cells 

responsible for this behavioral pattern (e.g. monocytes CD14
+
, granulocytes, lymphocytes) through CD14 and CD105, and cultured in 

hypoxic and normoxic media, all differentiated into macrophage-like adherent cells, and failed on fibroblastic-like cell differentiation. 

[105]
 This supports the importance of cell signaling through direct contact and chemokines, in a heterogeneous cell population. 

[112-115]
 

Co-culturing PBMCs and ASCs in a chondrogenic media show a synergic differentiating and migrating potency on ASCs populations. 

[113]
 Therefore, it reflects cell signaling as a centerpiece for cartilage repair. Apparently, hypoxia is the corner stone for triggering 

mononuclear migration from blood vessels (normoxic media) towards injured tissue, and differentiating into hematopoietic and non-

hematopoietic cells. 
[116]

  

Comparative studies performed in animals show promising cartilage repair in vivo for osteochondral lesions, with a similar 

outcome as with BM-MSCs 
[105, 117-120] 

(Table 1).  

Why use Stem and Progenitor Cell Therapy? 

 Articular cartilage is a weight and friction bearing tissue, composed of extracellular matrix (ECM), mainly collagen type 2, 

proteoglycans, aggrecans and chondrocytes. Its only vascular supply is the subchondral bone. 
[121]

 Its low cellularity and avascularity, 

makes for a limited regeneration and cartilage restoration capacity. 
[122]

 

 A cartilage defect can be: 1) chondral or partial thickness, when confined to articular cartilage, or 2) osteochondral, or full 

thickness, when the defect is deep enough to affect the subchondral bone. These lesions can be classified under the Outerbridge 

classification going from 0 to 4 depending on how severe and deep the lesion is. 
[123, 124]

 Generally while no repair takes place in 

chondral defects, a repairing attempt is seen in osteochondral defects on account of the subchondral blood supply, rendering a 



suboptimal tissue by stem and progenitor cells migrating from the bone marrow. 
[125]

 Small full thickness lesions are repaired with 

hyaline cartilage, but large ones are usually repaired with fibrocartilage formation. 
[41, 126]

 Multiple treatments are currently used for 

cartilage defects. These include microfracture, arthroscopic lavage and debridement, autologous or allogenic osteochondral grafting, 

and autologous chondrocyte implantation (ACI) 
[127]

 among others. Although promising with midterm results and pain relief, the main 

disadvantage is that some of them are a two - step procedure where harvesting and expanding of chondrocytes is needed. In addition, 

many of these therapies often lead to the formation of fibrocartilage. 
[128]

 This last is a hyaline like tissue, composed mainly by 

collagen 1, and with far less load and shear stress resistance, leading to eventual breakdown and secondary OA in the long term. 
[129]

 

OA is a highly prevalent joint disease affecting athletes following trauma and aging people. 
[130]

 Multiple factors have a role 

in OA pathophysiology, such as sex, age, injury, obesity, joint misalignment and genetic predisposition. Common features include 

chronic low grade inflammation, with subchondral lesions and progressive joint degeneration. The progression leads to loss of 

function in final stages due to increasing pain, swelling and loss of range of motion (ROM). 
[131]

  OA may affect multiple joints, the 

most prevalent and incapacitating is the knee and hip. 
[1]

 The current treatments for early to moderate OA include non-steroid anti-

inflammatory drugs (NSAIDS), corticosteroids, hyaluronic acid, and physiotherapy; however none seems to stop the degenerative 

progression, and in the best scenario provide some pain relief and improved function. This provides an opportunity to step in with 

stem cell therapy research and innovation, due to their hypoimmunogenic profile 
[132]

, immunosuppressive activity, as well as their 

proliferation and differentiation capacity into adult tissues.  

Currently, BMAC, using density separation (centrifuge) is one of the few “cell therapies” that is allowed by FDA regulations 

to deliver progenitor cells. All other further manipulation, are under 361 and 351 sections of the Public Health Safety (PHS) Act. 
[133]

 

The FDA categorized stem cell therapies as human cells, tissues, and cellular and tissue based products (HCT/Ps). Section 361 

mandates the FDA to regulate low-risk HCT/Ps and provides safety without requiring preclinical studies. Four principles must be 

fulfilled to be categorized as low risk: 1- minimal manipulation, 2- autologous or non-systemic effect, 3-non-combination product, and 

4- homologous use. If a product does not meet all of these 4 principles, it must be regulated under section 351, which demands 

preclinical studies, clinical studies, and premarket review. Little to no stem cell therapy is under section 361.
[134]

 

 

Clinical Evidence and Efficacy for Focal Chondral Lesions and OA 

 Multiple clinical investigators have reported on the efficacy and safety of stem cell therapy in cartilage repair for OA and 

focal chondral lesions. The following clinical trials: Vega et al. 
[135]

, Koh and Choi 
[136]

, Koh et al.
[37]

, Wong et al. 
[137]

, Saw et al. 
[107]

, 

Skowronski and Rutka 
[138]

 and Lee et al. 
[139]

 have reported outcomes on cell based therapies. Although showing significant 

heterogeneity in the cell-therapies used, a common denominator was that the majority of them showed positive outcomes, with 

minimum post surgical adverse events.  

Conversely, it might be premature to generalize that cell based therapies provide benefit for the treatment of patients 

compared to other available treatments. 



The efficacy must be tested with rigorous randomized and blinded trials, large sample sizes and longer term follow up. The 

outcomes assessed with thorough standardized metrics as the ones used above 
[140]

, the inclusion of imaging, and second look 

arthroscopy with biopsy should be the mainstay. High quality clinical studies will be the answer to an active patient population 

seeking higher levels of improvement 
[141]

, and the importance of blinded trials in future studies should surpass the high level 

expectation of the patients enrolled which constitutes a source of bias. 
[142, 143]

 

CONCLUSION 

 Stem and progenitor cells hold a promising future. There has been significant advance in cell therapy options for OA and 

focal chondral lesions. Overall these therapies using minimally manipulated autogenous cells appear to be safe. However, a rigorous 

approach must be made to provide better characterization of the identity, concentration, prevalence and biological potential of the stem 

and progenitor cells being transplanted. There is a need for standardization beginning with the stem cell nomenclature, cell processing 

and outcome measurement.  

In the upcoming years stem cell therapy might become a first line therapy within orthopaedics. This will require a parallel 

growth of stem cell adjuncts such as scaffolds, PRP (platelet - rich plasma), soluble growth factors, among other bioengineering 

techniques. All of these have potential for a substantial synergic effort.   
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Legend 

Figure 1. A) Picture demonstrating harvesting technique of bone marrow sample followed by B) of the sample (BMAC) with three defined layers. RBC: Red blood cell. 

 

 

 

Table 1 Comparative CD expression and chondrogenic potential [33] 
   

  

Harvesting 

sequenced 

process 

Positive CD markers Negative CD 

Markers CP 

Stem cells concentration 

SDSCs [97, 

98, 144-146] 

Synovium + 

subsynovial 

tissue, 
enzymatic 

digestion, 

filter, culture 
(approx 2 wks) 

44, 69, 73, 90, 105, 106, 166, 271 is 

the most chondrogenic subpopulation 

11b, 34, 45 

*** 1,000 -30,000/ml 

BM-MSCs 

[58, 89] 

 

BMA, 

centrifugation, 

culture (approx 
2-4 wks) 

 73, 90, 105 14, 34, 45, or 

11b, 79alpha, 

or 
19 and HLA 

DR 

** 

1-300,000/ml(depending 
on patient’s age, site, 

gender and health; and 

harvesting technique) 

PBMCs 
[105, 110] or 

PBPCs [101, 

111] 

Fresh whole 
blood in 

EDTA, 

centrifugation, 
hypoxic or 

normoxic 

culture (approx 
2-4 wks); or 

subcutaneous 

series of G-
CSF, followed 

by aphaeresis 

34, 45, 133 (freshly isolated / 
normoxic conditions) among others 

 

44, 90, 105, 106, 146, 166 and Stro-1 

MSCs panel 
 

 

34, 45,133 
(Hypoxic 

conditions) 
** 

2 - 5 x 106/kg of patient’s 
weight (heterogeneous 

stem cell population) 

ASCs [86, 

89, 147-150] 

Lipoaspirate or 

infrapatellar 
fat pad, 

enzymatic 
digestion, 

centrifugation, 

culture (approx 
2-4 wks) 

13, 29, 44, 73, 90 and 105(>80%), 34 

(initially), 36, 10, HLA ABC among 
others 

11b, 31, 45, 

106, HLA DR 
among others 

* 5,000 -1,500,000/ml 

Table 1: SDSCs: Synovial derived stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells; PBMCs: Peripheral blood mononuclear cells; PBPCs: 

Peripheral blood progenitor cells; G-CSF: Granulocyte colony stimulating factor; ASCs: Adipose stem cells; BMA: Bone marrow aspirate; EDTA: 

ethylenediaminetetraacetic acid; CP: Chondrogenic potential: ***= Most, **= Moderate, *= Least 

 

 

 



 

 

 

 

 

 

Table 2: BMP= bone morphogenic protein, TGF= tumoral growth factor, IGF= insulin like growth factor, FGF= fibroblastic growth factor.  

 

 

 

Table 2 Growth factors for trilineage differentiation[55, 76, 84, 151]   

Desired adult cell  Driving culture media Staining  

Chondrocyte 

Ascorbic acid, BMP-6-7, TGF-β3, 

dexamethasone, insulin, IGF-1, FGF 

 

Alcian blue, Safranin O/Fast green 

Osteoblast 

Ascorbic acid, BMP-2, dexamethasone, 1,25 OH 

vitamin D3 
 

Alizarin red / Picosiruis Red 

Adipocyte 
Dexamethasone, isobutyl methylxanthine, 

indomethacin, insulin, thiazolidinedione 
Oil red O  




