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1.1  Introduction

The knee is a complex joint that primarily allows the leg to flex and extend while 
also accommodating rotational, angular, and translational forces. Structurally, the 
femoral and tibial bony articulation surfaces offer little inherent stability. The inti-
mate relationship between the ligaments, capsule, and muscles surrounding the joint 
is required to reinforce it. If any of these structures are compromised, the subse-
quent biomechanical imbalance can increase the likelihood of additional injury or 
increased joint loading, making it essential to recognize and treat these pathologies. 
Nonetheless, a history of knee trauma or reconstructive surgery significantly 
increases the likelihood of developing osteoarthritis [1], which is one of the leading 
causes of chronic disability [2]. In cases of severe pain and debilitation along with 
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joint osteoarthritis, total knee arthroplasty (TKA) can be indicated. However, up to 
one-quarter of patients have reported dissatisfaction following TKA [3, 4], often as 
a result of anterior knee pain, stiffness, unexplained swelling, loss of range of 
motion, changes in proprioception, or loss of preoperative function mainly in the 
younger and more active population [1]. Poor outcomes can also stem from improper 
TKA alignment, leading to increased wear, poor functionality, and early failure 
[5–10], which advocates more closely reproducing the native kinematics which 
requires a detailed knowledge of the anatomy and biomechanics. Thus, the purpose 
of this chapter was to perform a detailed description of the ligamentous anatomy of 
the knee and the most important bony and soft tissue landmarks to consider for a 
total knee replacement.

1.2  Anterior Cruciate Ligament

The anterior cruciate ligament (ACL) is an intra-articular ligament mainly com-
posed of type 1 collagen that receives its blood supply from the middle genicular 
artery [11]. There are two functional bundles of the ACL, an anteromedial bundle 
(AMB) and posterolateral bundle (PLB), named for the relationship of their inser-
tion on the tibial plateau [11, 12]. Both bundles also attach to the posteromedial 
aspect of the lateral femoral condyle, with reliable bony landmarks providing useful 
references for identification at both attachments. The bifurcate ridge (BR) separates 
the proximal AMB and the distal PLB, while the lateral intercondylar ridge (LIR) or 
“resident’s ridge” serves as the anterior femoral margin of both bundles. Coursing 
anteromedially from the femoral attachment, the anterior-most border of the ACL 
tibial attachment is demarcated by the ACL ridge [13]. In close proximity is also the 
anterior root attachment of the lateral meniscus, with consequent overlap reported 
between the deep anterolateral meniscal root fibers and the broad tibial ACL attach-
ment [14, 15].

The role of the cruciates in TKA is debated with most prosthetic designs requir-
ing complete excision of the ACL. One exception is unicompartmental knee arthro-
plasty (UKA), which requires an intact ACL and has been reported to produce 
worse outcomes in ACL-deficient knees (survival rate of 95% versus 81% at 9 years 
follow-up) [17, 18]. UKA offers several potential advantages to TKA [19] when 
indicated, but as a prerequisite, the ACL may need to be reconstructed concurrently 
or in a staged fashion in some cases requiring a thorough understanding of its anat-
omy to best restore its overall function (Fig. 1.1).

Biomechanically, the ACL is the primary static stabilizer to anterior tibial trans-
lational forces [20–26], and it resists internal and external tibial rotation in flexion 
and extension [16, 27]. Cadaveric studies have demonstrated that in extension the 
PLB is taut and experiences the greatest force, whereas the AMB is taut in flexion 
with the highest transmission of forces at 60° [23]. In addition to resisting external 
forces, sensory and mechanoreceptors within the ligament contribute to propriocep-
tion and also assist in initiating important secondary stabilizing muscular reflexes 
[28, 29].
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Loss of proprioception following TKA is one factor contributing to patient dis-
satisfaction [1], which may be avoided in cruciate-retaining knee implants. 
Furthermore, sagittal plane kinematics have been preserved in 10-year follow-up 
studies after UKA [30], which contrasts with many current TKA designs that can 
result in anterior tibial subluxation in full extension [31–33] and paradoxical ante-
rior femoral translation during flexion [34].

1.3  Posterior Cruciate Ligament

The posterior cruciate ligament (PCL) is an intra-articular, extra-synovial [35] liga-
ment comprised of two bundles. There is a larger anterolateral bundle (ALB) and a 
smaller posteromedial bundle (PMB) [16, 36–38], which are named for their respec-
tive attachments onto a depression on the posterior aspect of the tibia. An important 
landmark of the tibial PCL attachment is an anterior relation with the shiny white 
fibers of the posterior horn of the medial meniscus [39]. The center is located 1.3 ± 
0.5 mm proximal to the bundle ridge, which is a bony prominence separating the 
ALB and PMB with an average distance of 8.9 ± 1.2 mm between their individual 
centers [39]. At the posterior aspect of the tibial plateau, a bony ridge marks the 
distal border of the PCL [40]. The two PCL bundles can often be distinguished more 
easily at their attachment to the lateral aspect of the medial femoral condyle, adja-
cent to the articular cartilage margin. The ALB is 12.1 ± 1.3 mm proximomedial to 
[39] and twice the size of the PMB [41]. Additionally, there are two meniscofemoral 
ligaments, an anterior (Humphry) and posterior (Wrisberg) that can often be found 
adjacent to the PMB at its femoral attachment [42]. Both of these structures may be 
present in up to 60% of knees, while 95% contain at least one [43].

The anatomy of the posterior cruciate ligament is relevant for cruciate-retain-
ing prosthetic designs for which potential advantages are preservation of bone 

a b

Fig. 1.1 (a) Anterior view of a right cadaveric knee demonstrating the anterior cruciate ligament 
(ACL), posterior cruciate ligament (PCL), and lateral meniscal anterior root attachment (LARA). 
(b) Sagittal cross section of a right femur demonstrating the anteromedial (AM) and posterolateral 
(PL) bundle of the ACL in relation to resident’s ridge
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stock, knee kinematics that better resemble the native, improved proprioception, 
femoral rollback on the tibia during extension, and better prosthesis stabilization, 
with the PCL preventing anterior translation of the femur on the tibia. In this 
regard, when performing the tibial cut, the surgeon should be extremely diligent 
not to damage the PCL attachment which may be spared in the majority of patients 
by performing a tibial bony cut of 4 mm or less when a posterior slope of 3–5° is 
used [44] (Fig. 1.2)

Biomechanically, the two bundles of the PCL provide codominant posterior 
translational stability [45, 46]. Secondarily the PCL resists rotational forces, par-
ticularly internal rotation between 90° and 120° [47, 48]. The individual bundles 
behave complementary at all flexion angles, demonstrating relative reciprocal 
changes in length, tension, and fiber orientation. At full extension, the PMB is taut 
and provides greater resistance to posterior tibial translational force [47, 49], becom-
ing shorter and more horizontal with flexion [50]. Conversely, the ALB is longer 
and taut in 90° of flexion [51–54], but is also more vertical [50].

Understanding this relationship between tension, length, and orientation is the 
basis for codominant force resistance throughout knee motion [55] and helps elu-
cidate the need for an anatomic double-bundle PCL when a reconstruction is 
needed. In cases where the cruciates are sacrificed in a TKA, the posterior cam-
post- stabilization creates equivalent but nonanatomic medial and lateral femoral 
condyle posterior translation, which increases wear at the post and decreases 
internal tibial rotation [34]. A PCL-retaining TKA can lead to paradoxical ante-
rior translation of the femoral condyles in flexion, which may be due to the verti-
cal position the PCL adopts in the absence of the ACL [56]. Bicruciate-retaining 
TKA has shown good midterm results, and as acute injury reconstruction has 
shown, a shift toward more anatomic reconstruction leads to better results and 
improved kinematics.

a b

Fig. 1.2 (a) Anteromedial view of a cadaveric knee demonstrating bony landmarks of the femoral 
attachments of the anterolateral bundle (ALB) and posteromedial bundle (PMB). (b) Posterior view 
of a cadaveric right knee demonstrating bony and soft tissue landmarks of the posterior cruciate 
ligament (PCL)
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1.4  Posterolateral Corner

The posterolateral corner (PLC) of the knee is comprised of three main primary 
lateral stabilizing structures: the fibular collateral ligament (FCL), popliteus tendon 
(PLT), and popliteofibular ligament (PFL) [57–61]. PLC injuries are present in 
nearly 16% of all knee ligament injuries [62]; however, the FCL, which is the pri-
mary varus stabilizer [52, 63, 64], is damaged in only 23% of PLC injuries [65] 
which may make identification difficult. The FCL attaches 1.4 mm proximal and 
3.1 mm posterior to the lateral epicondyle [61]. It extends distally, with an average 
length of 7 cm [66], attaching 8.2 mm posterior to the anterior margin of the fibular 
head and 28.4 mm distal to the tip of the fibular styloid [61].

The popliteus muscle originates on the posteromedial tibia, becoming tendinous 
intra-articular as it courses superiorly, and runs deep to the FCL attaching 18.5 mm 
anterior to it with the knee flexed at 70°. In the lateral third of the popliteal fossa, the 
musculotendinous junction of the popliteus gives rise to the PFL which has two 
divisions. The larger posterior division attaches 1.6 mm distal to the posteromedial 
aspect of the tip of the fibular styloid process, and the smaller anterior division 
attaches 2.8 mm distal to the anteromedial aspect of the tip of the fibular styloid 
process [61].

In addition to the three main lateral knee stabilizers, a number of secondary 
structures provide static and dynamic resistance to the PLC. The mid-third lateral 
capsular ligament is a capsular thickening that attaches to the lateral epicondyle 
anterior to the popliteus and to the tibia just posterior to Gerdy’s tubercle. It may 
function as a secondary varus stabilizer [61] and has a meniscofemoral and menis-
cotibial ligament component [67, 68]. The coronary ligament is also a component 
of the capsule found both medially and laterally attaching the menisci to their 
respective tibial plateau [69]. The lateral gastrocnemius tendon is the next important 
structure, because it is less frequently injured and can be used as a landmark during 
surgical reconstruction [70]. It is found posterior to the femoral FCL attachment 
along the supracondylar process and courses distally, fusing with the medial gas-
trocnemius and the soleus to form the sural triceps muscle. Additionally, there are 
two heads of the biceps femoris that attach to the fibula and enclose the distal attach-
ment of the FCL. The short head of the biceps femoris has two arms that attach 
along the lateral aspect of the fibular styloid. The capsular arm has a distal thicken-
ing that extends vertically from the fabella to the fibular styloid to form the fabel-
lofibular ligament. The fabella is a sesamoid bone (or cartilaginous analogue the rest 
of the time) that is found within the proximal lateral gastrocnemius tendon in 
approximately 30% of individuals [71]. The long head of the biceps also has two 
arms: a direct arm that inserts onto the posterolateral aspect of the fibular head and 
an anterior arm that is a crucial access point during FCL reconstruction as it fans out 
superficial to the FCL [70, 72].

The peroneal nerve, which can be damaged in up to one-third of PLC injuries [65, 
73], runs deep to the biceps femoris and must be identified surgically where it emerges 
1–2 cm proximal to the fibular head before coursing around the fibular neck and divid-
ing into superficial and deep branches [70, 72]. After a biceps tendon avulsion off the 
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fibula, the nerve may migrate within the soft tissue of the posterolateral compartment, 
and additional care during dissection should be taken. Finally, the broad fascia of the 
iliotibial band (ITB) is the most superficial layer of the lateral aspect of the knee, 
covering all of the lateral femoral structures as it attaches from the anterior superior 
iliac spine onto Gerdy’s tubercle on the anterolateral aspect of the tibia.

Opposing convex articular surfaces of the lateral femoral condyle and lateral 
tibial plateau create inherent bony instability in the lateral knee [74, 75]. 
Consequently, hyperextension and noncontact varus stress can cause injury, as well 
as a direct blow to the anteromedial knee [65]. Restraint to varus force is primarily 
accomplished by the FCL, particularly at 30° of flexion when there is less contribu-
tion from the other PLC structures that lend secondary support [65, 72]. The FCL 
also provides external rotational stability between 0° and 30° of flexion, along with 
the PLT in greater flexion and the PCL beyond 90° [76]. The PLT and the other PLC 
structures also provide secondary stabilization for anteroposterior tibial translation 
[52, 77, 78] and minor secondary restraint to internal rotation; however, those forces 
are controlled primarily by the ACL in low flexion angles and the anterolateral liga-
ment in higher flexion [70, 79]. Although PLT release may be useful for lateral 
flexion gap tightness [80], resection can affect gap balancing and stability in TKA 
[81], and iatrogenic laceration results in decreased functional scores 2–3 years post-
operatively following TKA [82]. Furthermore, overaggressive lateral structure 
releases have been implicated in TKA dislocations [83], and intraoperative injury to 
these structures can result in acute instability in flexion [84], warranting a preserva-
tion of the native anatomy (Fig. 1.3).

Fig. 1.3 Lateral view  
of a right cadaveric knee 
demonstrating isolated 
fibular collateral ligament 
(FCL) with attachments to 
the lateral femoral 
 epicondyle (LE) and the 
fibular head, popliteus 
muscle and tendon, 
popliteofibular ligament 
(PFL), and proximal 
tibiofibular joint (PTFJ)
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1.5  Medial/Posteromedial Structures

The medial collateral ligament (MCL) can be divided into a deep (dMCL) and 
superficial (sMCL) component. The two divisions of the MCL, along with the pos-
terior oblique ligament (POL), provide the primary stability to the medial knee 
[85–88]. The MCL is a well-vascularized, extracapsular ligament, which grants it 
superior intrinsic healing capabilities compared to the anterior cruciate ligament 
[89–92]. Evidence of growth factor bioactivity and healing following injury has 
validated these early observations and provided a foundation for future treatment 
modalities [93–95].

The sMCL is recognized as the largest medial structure. It has a single femoral 
attachment 3.2 mm proximal and 4.8 mm posterior to the medial epicondyle and 
two distinct but synergistic tibial attachments [89]. The distal tibial division blends 
deep to the pes anserine bursa and has a bony attachment 61.2 mm distal to the joint 
line. The proximal attachment blends with the soft tissue of the anterior arm of the 
semimembranosus tendon 12.2 mm distal to the tibial joint line.

Additionally, fibrous extensions from the distal aspect of the semimembranosus 
tendon blend with the posteromedial aspect of the joint capsule to form three POL 
arms. The superficial and capsular arms are thin fascial expansions. The central 
(tibial) arm is the largest and thickest reinforcement of the posteromedial joint cap-
sule, and it attaches on the femur 7.7 mm distal and 6.4 mm posterior to the adduc-
tor tubercle or 1.4 mm distal and 2.9 mm anterior to the gastrocnemius tubercle.

Finally, the medial aspect of the joint capsule thickens to form two components 
of the dMCL. The meniscofemoral component attaches 12.6 mm distal to the femo-
ral attachment of the sMCL, and the shorter and thicker meniscotibial component 
attaches just distal to the edge of the articular cartilage of the medial tibial plateau 
[93]. In addition to the three primary medial structures (sMCL, POL, and dMCL), 
other major structures of the medial compartment include the adductor magnus ten-
don (AMT), medial patellofemoral ligament (MPFL), medial hamstring tendons, 
medial gastrocnemius tendon (MGT), and vastus medialis obliquus muscle.

Medial knee stability is provided by the sMCL, POL, and dMCL [85–88]. The 
sMCL and POL also contribute to anterior and posterior drawer loads in the intact 
knee [88]. The fixation differences between the proximal soft tissue attachment and 
the distal bony insertion of the sMCL provide biomechanical synergy [87, 96]. The 
proximal tibial division opposes valgus forces independently of flexion angle, 
whereas the more static distal division experiences the highest valgus load at 60° of 
flexion. Additionally, the sMCL provides resistance to external rotation, and to a 
lesser extent internal rotation, at increasing flexion angles [87, 88].

The POL functions reciprocally and complementarily to the sMCL, producing 
significantly higher load responses to internal torque at full extension. The POL also 
resists valgus forces, along with the meniscotibial attachments of the dMCL. The 
meniscotibial attachment resists valgus forces at 60° of flexion, and the menisco-
femoral attachment resists valgus forces throughout flexion, though the dMCL 
mainly opposes external rotation between 30° and 90° [87].

In TKA with varus deformity, subperiosteal detachment of the medial soft tissue 
at the proximal tibia affects balancing relative to the function of the structures in the 
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intact state. Flexion tightness requires anterior medial soft tissue release, whereas 
posterior release affects the extension gap [97]. Additionally, a sleeve of medial soft 
tissue is often tethered to osteophytes during removal, and greater bone removal 
may lead to increased gapping and early implant failure [98]. While soft tissue bal-
ancing is an important aspect of successful TKA, a preservation of the normal anat-
omy is important for implant longevity (Fig. 1.4).

1.6  Conclusions and Future Perspectives

Detailed anatomic knowledge is of outmost importance at the time of surgical pro-
cedures such as ligament reconstructions and joint arthroplasty. Oftentimes, liga-
ment imbalances are present at the time of knee arthroplasties that may need to be 
addressed in conjunction with the bony work, and therefore a precise understanding 
of the anatomy and biomechanics is key. Furthermore, with the advent of cruciate- 
retaining prostheses, the awareness of the anatomy and the biomechanical conse-
quences of the disruption of the structures can potentially yield better results. 
Further studies are needed to more thoroughly evaluate the long-term clinical 

Fig. 1.4 Medial view of a right cadaveric knee demonstrating isolated superficial medial collat-
eral ligament (sMCL), medial patellofemoral ligament (MPFL), posterior oblique ligament (POL), 
semimembranosus tendon (Semimemb), and vastus medialis oblique (VMO)
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effectiveness of various surgical techniques and prosthesis models, potentially with 
native ligamentous sparring methods to better preserve the anatomy and joint 
proprioception.
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