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ABSTRACT 4 

Purpose: To (1) determine the diagnostic efficacy of artificial intelligence (AI) methods for 5 

detecting anterior cruciate ligament (ACL) and meniscus tears and to (2) compare the efficacy 6 

to human clinical experts.  7 

 8 

Methods: PubMed, OVID/Medline, and Cochrane libraries were queried in November 2019 for 9 

research articles pertaining to AI utilization for detection of ACL and meniscus tears. 10 

Information regarding AI model, prediction accuracy/area under the curve (AUC), sample sizes 11 

of testing/training sets, and imaging modalities were recorded.  12 

 13 

Results: A total of 11 AI studies were identified: 5 investigated ACL tears, 5 investigated 14 

meniscal tears, and 1 investigated both. The AUC of AI models for detecting ACL tears ranged 15 

from 0.895-0.980, and the prediction accuracy ranged from 86.7%-100%. Of these studies, 16 

three compared AI models to clinical experts. Two found no significant differences in diagnostic 17 

capability, while one found that radiologists had a significantly higher sensitivity for detecting 18 

ACL tears (p=0.002) and statistically similar specificity and accuracy. Of the 5 studies 19 

investigating the meniscus, the AUC for AI models ranged from 0.847-0.910 and prediction 20 

accuracy ranged from 75.0%-90.0%. Of these studies, 2 compared AI models to clinical experts. 21 

One found no significant differences in diagnostic accuracy, while one found that the AI model 22 

had a significantly lower specificity (p=0.003) and accuracy (p=0.015) than radiologists. Two 23 

studies reported that the addition of AI models significantly increased the diagnostic 24 

performance of clinicians compared to their efforts without these models. 25 

 26 

Conclusion: AI prediction capabilities were excellent and may enhance the diagnosis of ACL and 27 

meniscal pathology; however, AI did not outperform clinical experts. 28 

 29 

Clinical relevance: AI models promise to improve diagnosing certain pathologies as well as or 30 

better than human experts, are excellent for detecting ACL and meniscus tears, and may 31 
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enhance the diagnostic capabilities of human experts; however, when compared to these 32 

experts, may not offer any significant advantage.   33 
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INTRODUCTION 34 

The development and application of deep learning (DL) and machine learning (ML) algorithms 35 

to generate prediction models from large datasets is an increasingly utilized statistical tool 36 

which relies on pattern recognition and constrained feature selection. By “constraining” feature 37 

selection, the algorithms limit the number of variables ultimately chosen and used in 38 

subsequent analyses by selecting only those with the greatest predictive value from an initial 39 

large pool of potential variables. A clinically relevant application of these artificial intelligence 40 

(AI) methods pertains to its ability to diagnose injury and disease on medical imaging studies. AI 41 

models learn to recognize disease patterns through repetition and learning, and it is thought 42 

that such features may confer the ability to more quickly and accurately identify disease.  43 

 44 

Machine learning describes statistical processes that exhibit the “learning” associated with 45 

human intelligence and leverage this experiential learning to improve and refine programmed 46 

algorithms to predict and outcome.1 The algorithms are applied to a dataset of interest, and 47 

self-train based on patterns in the dataset. Once trained, the algorithms can make specific 48 

decisions when presented with data that it has not seen before. Each machine learning 49 

algorithm makes decisions based on different sets of rules that are out-of-scope of the current 50 

study, but allow them to come to decisions in different ways. Algorithms can be modified to 51 

optimize their prediction capabilities, and ultimately the predictions made by the algorithm are 52 

compared against the true outcome present in the data set to determine how accurate 53 

predictions are.2 This approach has become increasingly popular given the ability of these 54 

algorithms to optimize prediction accuracy, whereas traditional statistics may sacrifice accuracy 55 

at the cost of favoring interpretability. Machine learning has become of recent interest in 56 

orthopaedics given these potential benefits, as evidenced by the recent increase in literature 57 

which has applied this methodology.3-6 58 

 59 

AI technology has been successfully applied in various clinical scenarios. Detection of diabetic 60 

retinopathy through analyzing retinal fundus photographs7, 8 and skin cancer through 61 

constructing deep neural networks based on imaging and disease labels9 have efficacy 62 
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comparable to, or better than, human experts. Within the field of orthopedic spine and 63 

oncologic surgery specifically, AI algorithms are gaining popularity by aiding decision-making 64 

and can be used in clinical settings.5, 10, 11 However, the performance of these models compared 65 

to clinical experts in the field remains poorly understood. A recent systematic review by 66 

Langerhuizen et al.12 found that AI algorithms had excellent performance for fracture detection 67 

in the orthopedic trauma literature and outperformed human examiners for detecting and 68 

classifying hip and proximal humerus fractures. Although it appears that AI methods may may 69 

confer diagnostic benefits in other realms of orthopedic surgery, their performance and clinical 70 

utility in sports medicine remains poorly defined. 71 

 72 

Imaging-based detection of sports medicine injuries of the knee, specifically the use of 73 

magnetic resonance imaging (MRI) for anterior cruciate ligament (ACL) and meniscus tears, is 74 

the current gold standard for diagnosis. However, the diagnostic accuracy of MRI may be 75 

decreased in several circumstances: (1) observer inexperience and bias, (2) small partial or 76 

incomplete tears, (3) imaging artifacts, (4) incomplete MRI study, and (5) presence of 77 

concomitant injuries. Application of AI methods may address these shortcomings by facilitating 78 

clinical decision-making and improving patient management. As such, the purpose of the 79 

current study was to (1) determine the diagnostic efficacy of AI methods for detecting ACL and 80 

meniscus tears and to (2) compare the efficacy to human clinical experts. The authors 81 

hypothesized that AI method performance would be excellent for detection of ACL and 82 

meniscus tears and could outperform human examiners.   83 
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METHODS 84 

Identification and Selection of Articles 85 

A systematic search in accordance with the 2009 Preferred Reporting Items for Systematic 86 

Review and Meta-Analysis (PRISMA) statement13 was conducted using PubMed, OVID/Medline, 87 

and Cochrane libraries. The timeframe for the search was the conception of each online 88 

database until November 8, 2019. The following Boolean search syntax was used to conduct the 89 

search: (orthopedics OR orthopedic procedures OR ligament OR tear* OR (ligament* AND tear* 90 

AND orthop*)) AND (artificial intelligence OR neural network* or deep learning OR machine 91 

learning OR machine intelligence) AND (predict* OR predictive value of test OR score OR scores 92 

OR scoring system OR scoring systems OR observ* OR observer variation OR detect* or 93 

evaluat* OR analy* OR assess* OR measure*). The protocol for the current systematic review 94 

was registered on PROSPERO prior to collection and analysis of the data (ID: blinded for review). 95 

 96 

Articles populated from the above search met inclusion criteria if (1) the study methods and 97 

analyses pertained to development or utilization of artificial intelligence or machine learning for 98 

detecting or classifying the presence of an ACL or meniscus tear, and (2) was published in the 99 

English language. Studies were excluded if (1) data was only published in the form of an 100 

abstract, technique paper, cadaveric or animal study, or letter to the editor; or (2) pertained to 101 

robotic-assisted surgery. Two observers (blinded for reviewer) independently screened the 102 

abstracts and titles of potential articles. Full-text review was only performed during the study 103 

selection process if necessary to determine if the articles satisfied inclusion and exclusion 104 

criteria. Additionally, all references from the included studies were reviewed and reconciled to 105 

verify that no relevant articles were missing from the systematic review. A total of 1,619 106 

records were initially identified, and a total of 11 were ultimately included in the qualitative 107 

synthesis (Figure 1). 108 

 109 

Data Acquisition 110 

All data were recorded into a custom spreadsheet using a modified information extraction 111 

table.14 Categories for data collection for each full article included (1) article information; (2) 112 
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input features; (3) imaging plane; (4) size of training and testing samples; (5) ground truth label 113 

assignments; (6) output classes; (7) AI models used; (8) use of pretrained Convolutional Neural 114 

Networks (CNN); and (9) performance.  115 

 116 

Assessment of Heterogeneity and Methodological Quality 117 

A modified MINORS scoring criteria was used to assess quality as has been previously applied in 118 

systematic reviews on AI in orthopedics12 given that studies concerning AI methods are 119 

classified as developmental rather than diagnostic. Quality appraisal focused on identification 120 

of (1) a clear study aim, (2) description of inclusion and exclusion criteria for input features (all 121 

eligible imaging examples included), (3) determination of ground truth (reference standards for 122 

AI), (4) report of distribution of data set (training, validation, and testing phases), (5) described 123 

how performance of AI model was assessed (area under the curve [AUC]/prediction), and (6) 124 

clearly described AI model used. These criteria were applied to and quantified for each study. 125 

For reference, the AUC is the quantitative output of a receiver operator curve (ROC) analysis of 126 

discrimination. ROC and discrimination analysis is a common performance analysis in diagnostic 127 

studies, which assesses the probability that the machine learning model will assign a greater 128 

predicted probability to a randomly selected positive case (true positive case, i.e., a patient who 129 

actually had an ACL or meniscus tear) relative to a randomly selected negative case (false 130 

positive case, i.e., a patient who did not have an ACL or meniscus tear). Each study could score 131 

a total of seven points, with a score of zero indicating poor methodological quality, and a score 132 

of seven indicating the highest methodological quality. Two independent observers (blinded for 133 

review) assessed all included studies. The inter-observer reliability was excellent at 0.97 (95% 134 

Confidence interval, 0.93-0.99). Any discrepancies were resolved by consensus.  135 

 136 

Statistical Analysis 137 

All data was qualitatively synthesized and reported in both narrative fashion in addition to table 138 

format. Extracted data was presented as means and ranges when appropriate with associated 139 

p-values given the degree of heterogeneity between studies. All studies considered a p-value 140 
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<0.05 to indicate statistical significance. All data extraction and analyses were performed in 141 

Microsoft Excel (Microsoft Corporation, Washington, USA).  142 
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RESULTS 143 

A total of 11 studies were identified in the search.15-25 All 11 studies were included in the 144 

qualitative data analysis. Of these 11 studies, five investigated the use of AI to detect ACL 145 

tears,15, 17, 20, 21, 24 five investigated the use of AI to detect tears of the meniscus,18, 19, 22, 23, 25 and 146 

one investigated both.16 147 

 148 

AI Model Performance: ACL Tear Detection 149 

All six studies that investigated the performance of AI on ACL tear detection utilized knee MRI 150 

acquired in standard imaging planes. Four (66.6%) of the studies analyzed sagittal-plane images 151 

only,15, 20, 21, 24 one study analyzed coronal images only,17 and one study analyzed sagittal, 152 

coronal, and axial images.16 A total of four (66.6%) studies reported AUC data for complete ACL 153 

tear detection. The AUC for these AI models ranged from 0.895-0.980 (Table 1). Additionally, 154 

four studies report AI model prediction accuracy for specifically detecting complete ACL tear 155 

(range 86.7%-100%). 156 

 157 

Štadjuhar et al.24 utilized two different feature extraction techniques: Histogram of Oriented 158 

Gradient (HOG) and Generalized Search Tree (GIST). These feature extraction techniques were 159 

subsequently paired with two commonly used machine learning models: Support Vector 160 

Machine (SVM) and Random Forest (RF). They found that their best performing machine 161 

learning model that combined HOG with linear-kernel SVM (HOG+lin-SVM) performed the best, 162 

producing an AUC of 0.894 for differentiating between an injured ACL and healthy ACL and an 163 

AUC of 0.943 for detecting completely ruptured ACL cases only.  164 

 165 

Abdullah et al.15 described a diagnostic system consisting of image pre-processing, feature 166 

extraction, and finally classification. The authors utilized k-Nearest Neighbor (K-NN) and Back 167 

Propagation Artificial Neural Network (BP-ANN) classifiers to determine the best accuracy for 168 

ACL tear classification. They found that BP-ANN produced a higher classification accuracy of 169 

94.44%, compared to 87.33% for k-NN.  170 
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Chang et al.17 evaluated multiple customized CNN models with variations in the input fields-of-171 

view (i.e. full slice, cropped slice, dynamic patch-based sampling) and dimensionality (single 172 

slice, three slices, five slices) for detection of complete ACL tears. They determined that the 173 

model created to dynamically sample random cropped patches of  images of the ACL 174 

performed the best in terms of detecting ACL tears when compared to a similar model that 175 

utilized the entire uncropped MRI slices. The model that utilized dynamic sampling had an 176 

accuracy of 96.7% and AUC of 0.971.  177 

 178 

Bien et al.16 used a fully automated deep learning CNN model with logistic regression for 179 

predicting the presence or absence of ACL tears on MRI after image pre-processing 180 

(intact=normal, mucoid degeneration, ganglion cyst, sprain; tear=low-grade partial tear with 181 

<50% fibers torn, high-grade partial tear with >50% of fibers torn, or complete tear). They 182 

reported that their best performing model produced an AUC of 0.965 (95% CI 0.938-0.993) for 183 

ACL tear detection. The specificity, sensitivity, and accuracy of the model were also reported as 184 

0.968 (95% CI 0.890-0.991), 0.759 (95% CI 0.635-0.850), and 0.867 (95% CI 0.794-0.916), 185 

respectively.  186 

 187 

AI Model Performance Compared with Human Observers: : ACL Tear Detection  188 

Three (50.0%) studies compared the performance of an AI model for ACL tear detection with 189 

human medical experts.16, 20, 21 190 

 191 

Liu et al.20 trained multiple CNNs and applied them to a test set of 50 MRI images of full 192 

thickness ACL tears and 50 MR images with intact ACLs. They found that their model with the 193 

best overall diagnostic performance for detecting the presence or absence of a full thickness 194 

ACL tear produced an AUC of 0.98 (95% CI: 0.93-1.00, p <0.001) However, there was no 195 

statistically significant difference in diagnostic performance found between the AI model and 196 

clinical radiologist performance (Radiologist 0.90 (95% CI: 0.95-1.00); Fellow 0.90 (95% CI: 0.95-197 

1.00); Resident1 0.93 (95%CI 0.88-0.98); Resident2 0.97 (95%Ci 0.94-1.00); Resident3 0.98 (95% 198 

CI 0.95-1.00).   199 
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 200 

Mazlan et al.21 tested an SVM algorithm on 60 samples from MR images of 100 non-injured 201 

ACLs, 100 partially-torn ACLs, and 100 completely-torn ACLs that underwent pre-processing. 202 

They reported that the SVM model had an accuracy of 100% for classifying ACL MRI samples as 203 

normal, partial-tear, or complete-tear. The authors also sought to compare the diagnostic 204 

capability of their AI model to that of two medical experts. No statistically significant 205 

differences between the AI model and radiologists were found in terms of diagnostic 206 

capabilities, as the SVM and both medical experts correctly identified all 10 samples with 100% 207 

accuracy.  208 

 209 

Bien et al.16 compared their MRNet model’s performance for detecting ACL tears to three 210 

musculoskeletal (MSK) radiologists on a testing set of 120 knee MR images, with the majority 211 

vote of 3 musculoskeletal (MSK) radiologists serving as the reference standard. They also 212 

evaluated changes in the diagnostic performance of clinical experts when the AI model 213 

predictions were provided to the radiologists during interpretation. Their model for detecting 214 

complete ACL tear produced an AUC of 0.968 (95% CI 0.890-0.991) compared to radiologist 215 

specificity of 0.933 (95% CI 0.906-0.953). However, results were not statistically significant (p-216 

value=0.441). Radiologists achieved significantly higher sensitivities for tear diagnosis than the 217 

AI model (AUC 0.906 vs. 0.759, p-value=0.002). The AI model accuracy for ACL tear detection 218 

was 0.867 (95% CI 0.794-0.916), which was lower than the MSK radiologist accuracy of 0.920 219 

(95% CI 0.900-0.937), which was not statistically significant (p-value=0.075).  When provided 220 

with model assistance, there was a statistically significant increase (4.8%, p<0.001) in the 221 

clinical experts’ specificity in identifying ACL tears. They reported that because the testing set 222 

consisted of 62 exams that were negative for ACL tear, the represented increase in specificity in 223 

the optimal clinical setting would potentially translate to the avoidance of three unnecessary 224 

surgeries for suspected ACL tears.  225 

 226 

AI Model Performance: Meniscus Tear Detection 227 
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All six studies that investigated the performance of AI models on meniscus tear detection 228 

utilized MRI. Five (83.3%) of the studies analyzed sagittal-plane images only,18, 19, 22, 23, 25  and 229 

one study analyzed sagittal, coronal, and axial images.16 Four (66.67%) studies reported AUC 230 

data for meniscus tear detection, ranging from 0.847-0.910 (Table 2).   231 

 232 

Fu et al.19 compared the performance of two SVM models to detect meniscus tears. One model 233 

was created to select relevant meniscus MR features, while the other model implemented the 234 

SVM model without feature selection. The SVM model without feature selection produced an 235 

AUC of 0.727 for meniscus tear detection, while their model with feature selection yielded an 236 

AUC value of 0.912 for meniscus tear detection. 237 

 238 

Couteax et al.18 used an R-CNN model for tear detection (tear in any meniscus) and localization 239 

(anterior or posterior). The anterior meniscus was classified as torn when at least one network 240 

had detected a torn anterior meniscus and the posterior meniscus was classified as torn when 241 

the strict majority of the networks had detected a torn posterior meniscus. When they applied 242 

their model to a test set of 700 MRIs, the authors found that the model produced a weighted 243 

AUC score of 0.906. 244 

 245 

Roblot et al.23 used a three-step AI model where an image was transferred into a R-CNN trained 246 

to detect menisci as torn or normal, meniscus tear location, and whether the tear was 247 

horizontal or vertical. The model was tested on a dataset of 700 MRI images to perform 248 

detection of meniscus tear presence, position, and orientation. The AI model produced an AUC 249 

of 0.94 for presence of a meniscal tear, 0.92 for detection of the position of the two meniscal 250 

horns, and 0.83 for orientation of the tear. The overall combined AUC was 0.90.   251 

 252 

Pedoia et al.22 created a deep-learning model that combined meniscus segmentation and a 3D 253 

CNN for the detection and severity staging of meniscus lesions. The model was first built to 254 

discriminate between the presence of a lesion versus no lesion (including no lesion and 255 

intrasubstance abnormalities), and subsequently lesion severity (severe lesion=maceration of 256 
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the meniscus; mild-moderate lesion=non-displaced tears and displaced and complex tears 257 

without deformity; no lesion= lesion absence and intrasubstance abnormalities).  This model 258 

produced a lesion versus no lesion AUC of 0.89 on the test dataset and accuracies of 80.74%, 259 

78.02%, and 75.00% for determining severe lesion versus mild-moderate lesion versus no 260 

lesion, respectively. 261 

 262 

Bien et al.16 also investigated the ability of their CNN models to detect meniscus tears following 263 

their investigations of diagnostic capabilities for ACL tears. For meniscus tear diagnosis, this 264 

group reported an accuracy of 0.725 (95% CI 0.639-0.797) and an AUC of 0.847 (95% CI 0.780-265 

0.914). 266 

 267 

Fazel-Zarandi et al.25 used AI for MR image segmentation followed by the application  of a 268 

Perceptron Neural Network (PNN) for classification of meniscal tears. A testing dataset of 50 269 

MRIs were fed into the PNN and resulted in meniscus tear versus no meniscus tear accuracy of 270 

90%. Classification rate (precision %) was also reported for five different settings of meniscus 271 

tear including: (1) medial anterior horn and posterior horn normal (88.82%), (2) lateral anterior 272 

horn and posterior horn normal (92.13%), (3) medial anterior horn normal and posterior horn 273 

torn (84.24%), (4) lateral anterior horn normal and posterior horn torn (91.96%) and (5) lateral 274 

anterior horn torn and posterior horn normal (87.64%).  275 

 276 

AI Model Performance Compared with Humans: Meniscus  277 

Two (33.3%) studies compared the performance of using an AI model for meniscus tear 278 

detection with human medical experts.16, 22 279 

 280 

Bien et al.16 compared the performance of their AI model with unassisted MSK radiologists for 281 

detecting meniscus tear (intact=normal, degenerative changes without tear, postsurgical 282 

changes without tear; tear=increased signal reaching the articular surface on at least two slices 283 

or morphologic deformity). When compared to the MSK radiologists in the study, the AI model 284 

had a statistically significant lower specificity (AUC 0.882, 95% CI 0.847-0.910 versus AUC 0.741, 285 
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95% CI 0.616-0.837; p-value=0.003) and accuracy (accuracy (0.849, 95% CI 0.823-0.871 versus 286 

0.725, 95% CI 0.639-0.797, p=0.015). The sensitivity (0.820, 95% CI 0.781-0.853 versus 0.710, 287 

95% CI 0.587-0.808; p=0.504) was also shown to be lower for the AI model compared to MSK 288 

radiologists, although this was not statistically significant.  289 

 290 

Pedoia et al.22 analyzed 1,478 MRI studies and utilized automatic segmentation of cartilage and 291 

meniscus using 2D U-Net. Detection and severity staging of meniscus and cartilage lesion was 292 

performed with a 3D CNN. Comparisons were made between their model and experts, where 293 

they sought to determine the inter-rater variability between three MSK radiologists (expert 1: 294 

>20 years of experience, expert 2: 10 years of experience, <1 year of experience) for 295 

determining meniscus lesion severity on selected cases. They found an average agreement 296 

between the three experts of 86.27% for no meniscus lesion, 66.48% for mild-moderate lesion, 297 

and 74.66% for severe lesion, while the best AI model obtained accuracies of 80.74% for no 298 

meniscus lesion, 78.02% for mild-moderate lesion, and 75.00% for severe lesion.  299 

 300 

Quality Assessment 301 

The average modified MINORS score among all studies was 4.9±1.0 (Table 3), indicating 302 

moderate to high methodological quality of the included studies on average. The most common 303 

reasons for loss of quality points was failure to describe both the inclusion and exclusion criteria 304 

of input features including patient and imaging selection (n=4, 36.4%) and failure to describe 305 

ground truth assignment (n=4, 36.4%). In the absence of clearly defined inclusion/exclusion 306 

criteria, selection bias cannot be excluded for the four studies. Failure to clearly describe the 307 

ground truth assignment risks publishing data from poorly trained AI models that may be 308 

inaccurate. The remaining limitations to quality was failure to describe the distribution of data, 309 

which also potentiates selection bias and misinterpretation of conclusions.   310 

Jo
urn

al 
Pre-

pro
of



AI for ACL and Meniscus Tears 
 

DISCUSSION 311 

The main finding of the current study was that the AUC and prediction accuracy of AI models 312 

for detecting ACL tears ranged from 0.895-0.980 and 86.7%-100%, while the AUC and 313 

prediction accuracy for detecting meniscus tears ranged from 0.847-0.910 and 75.0%-90.0%. 314 

Additionally, in two studies that compared AI models to clinical experts, one found no 315 

significant differences in diagnostic accuracy, while one found that the AI model had a 316 

significantly lower specificity and accuracy than radiologists. Two studies reported that the 317 

addition of AI models significantly increased the diagnostic performance of clinicians compared 318 

to their efforts without these models. However, the heterogeneity of the studies and 319 

methodology identified in this systematic review suggests several areas for improvement and 320 

makes interpretation across studies challenging. 321 

 322 

AI models are mathematical computing algorithms trained to integrate big data and 323 

autonomously assign labels to unseen data. Through multiple statistical iterations and pattern 324 

recognition, these models can apply learned features from training data sets and apply them to 325 

test sets to detect or classify lesions on many imaging modalities.  Discrimination is also 326 

employed in conjunction with these AI models through generating a receiver operator curve 327 

(ROC) and generating a c-statistic (area under the curve, AUC). An AUC of 1.0 indicates perfect 328 

discrimination, while an AUC of 0.5 indicates discrimination similar to chance.26 The current 329 

study found that the AUC for detecting ACL tears was near perfect ranging from 0.90-0.98 and 330 

that for detecting meniscus tears was excellent at 0.85-0.91.  331 

 332 

Perhaps most importantly, the current study found that a combination of AI and human experts 333 

outperformed human experts or AI alone for diagnosis of ACL and meniscal tears, similar to the 334 

results of a prior systematic review of natural and artificial intelligence in neurosurgery.27 AI 335 

methods have been previously applied to achieve or exceed human-level performance for tasks 336 

ranging from detection of distal radius fractures and hip fractures, to malignant pulmonary 337 

nodules.28-32 The clinical relevance of AI applications for ACL and meniscal tears may be divided 338 

into the following categories: (1) human-level performance or better on routine tasks and (2) 339 
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human-level performance or better on difficult tasks. During algorithm development, cohort 340 

curation, and study design, the studies included in this systematic review did not distinguish 341 

between these ultimate goals. If the intended purpose of AI algorithms is to diagnose lesions 342 

that are difficult for humans (partial tears, poor imaging), the AI algorithms should be 343 

specifically trained for this purpose. On the other hand, if the purpose of AI algorithms is to 344 

diagnose simple lesions, the output of these algorithms should be designed into clinically 345 

relevant categories (“definitely normal”, “definitely abnormal”, “not sure”) to improve the 346 

efficiency and workflow of diagnosticians.  347 

 348 

Interestingly, none of the included studies compared the use of AI to the gold standard of 349 

confirming ACL and meniscus lesions, which is arthroscopy. This is likely a function of the 350 

designs of the included studies, in which those that made a comparison to human experts were 351 

intended to do so. In the two studies that compared AI models to clinical experts, one found no 352 

significant differences in diagnostic accuracy and one found that AI was inferior in diagnostic 353 

accuracy. If it is assumed that clinical radiologist experts with only images at their disposal are 354 

less accurate at diagnosing these lesions than the gold standard of arthroscopy, then by 355 

transitive property, AI may be less accurate than arthroscopy as well. Future studies are 356 

warranted to determine the accuracy of AI for diagnosis of these lesions in comparison to 357 

arthroscopy as a ground truth label.  358 

  359 

Another area for improvement is the requirement for adherence to peer-reviewed AI-specific 360 

guidelines. Efforts are underway to update the TRIPOD guidelines and develop a standardized 361 

system for AI applications in healthcare.33 Several of the studies included in this analysis did not 362 

report measures of model performance such as precision-recall curves and Brier score that are 363 

key to interpreting diagnostic studies, particularly when outcomes are not balanced.34, 35 AI is 364 

often criticized for the “black-box” nature of transformations required to take input data and 365 

produce meaningful outcomes. This block-box limits our ability to understand the specific 366 

imaging features an AI method utilized to produce its probability outputs. However, prior 367 

studies have provided explainable algorithms where output not only predicted probabilities, 368 
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but also explanations in the form of augmented input images with heat maps highlighting the 369 

regions of interest for the specific diagnosis task.29 Success by Lindsey et al. in applying these 370 

explainable AI techniques for distal radius fracture detection should also become the norm for 371 

sports medicine.29  372 

 373 

AI has significant implications for the future of diagnosis in orthopaedic sports medicine, but 374 

clinicians must be informed and critical consumers of this rapidly evolving field.36 The focus of 375 

this review was on diagnostic applications of AI in orthopaedic sports medicine and a similar 376 

analysis for prognostic applications of AI remains to be undertaken. Interestingly, AI did not 377 

outperform human experts, which is potentially a result of the early applications of AI in this 378 

field and the need to further refine and modify algorithms. It is possible that as these 379 

algorithms continue to be trained with more data, that prediction accuracies and image 380 

recognition improves and may eventually outperform these experts. As described above, the 381 

drawbacks of current AI applications for diagnosis of ACL and meniscal tears should inspire 382 

future studies to follow standardized guidelines to allow for reliable and reproducible research. 383 

However, advantages of AI include the potential for the rapid and accurate identification and 384 

diagnosis of pathology, such as ligamentous and meniscal tears, which may initially be missed 385 

by the human eye. Eventually, AI and related technology may progress to the point where 386 

fewer working personnel are required to perform these tasks (i.e., the development of 387 

pathology-specific AI algorithms, where only one attending radiologist is required to double-388 

check the finding made by the algorithm, as opposed to the current use of teams of multiple 389 

radiologists who are burdened with large numbers of images with multiple views to read). This, 390 

in turn, may increase timeliness of reads and decrease healthcare costs. Ultimately, ensuring 391 

clinical relevance at every step in algorithm conception, design, and development will lead to 392 

true progress for AI in orthopaedic sports medicine. Applications of AI in orthopaedic surgery 393 

are rapidly growing and periodic updates will be required to appropriately represent the state 394 

of the literature in the years to come. At present, inadequate reference standards to train and 395 

test AI is the biggest hurdle to overcome prior to integration into clinical workflows.  396 

  397 
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Limitations 398 

There are a number of limitations that must be acknowledged to appropriately interpret the 399 

results of this study. This was a systematic review that followed the PRISMA guidelines, but did 400 

not include a more formal quantitative meta-analysis due to study heterogeneity. Despite the 401 

comprehensive search, the total number of studies included in this analysis was relatively small. 402 

Another limitation is that no studies included diagnostic arthroscopy as the gold standard 403 

reference to diagnose ACL or meniscus lesions, which may limit the applicability of the findings 404 

to clinical practice. Finally, studies were inherently heterogeneous given the AI models used, 405 

inclusion/exclusion criteria, ground truth label assignments, and imaging protocols (Tables 1 406 

and 2).   407 
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CONCLUSION 408 

AI prediction capabilities were excellent and may enhance the diagnosis of ACL and meniscus 409 

pathology; however, AI did not outperform clinical experts.  410 
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Figure legends: 508 
Figure 1:  Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 509 
flowchart for included studies. 510 
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Tables 511 
Table 1. Artificial Intelligence and Methodology for Anterior Cruciate Ligament Studies 512 

Study 
Input 

Features 
Imaging 

plane 
Dataset 

size 
Anatomic 
structure 

Ground/truth 
label 

assignment 

Output 
classes 

Al models 
used 

Pretrained 
CNN 

Size 
training 

set 

Size 
validation 

set/validation 
method 

Size 
test 
set 

Performance 
(accuracy/AUC) 

Štadjuhar 
et al. 2017  

MR Sagittal 917 ACL 
Two 

Radiologists 
2 

HOG+linSVM 
 
 
 
 
 
 
 

HOG+RF 
 
 
 
 
 

GIST+rbfSVM 
 
 
 
 
 

GIST+RF 

NA NA 
10- fold 
cross-

validation 
NA 

NA/0.894 (linear-kernel 
SVM+HOG: injury-

detection problem) 
 

NA/0.943 (linear-kernel 
SVM +HOG: complete 

rupture) 
 

NA/0.884 (injury-
detection) 

 
NA/0.937 (complete 

rupture) 
 

NA/0.889 (injury-
detection) 

 
NA/0.913 (complete 

rupture) 
 

NA/0.880 (injury-
detection) 

 
NA/0.895 (complete 

rupture) 

Mazlan et 
al. 2017 

MR Sagittal 300 ACL 

Two Medical 
Experts with 
>7 years of 
experience 

3 SVM  NA 
210 

(70%) 
30 (10%) 

60 
(20%) 

100%/NA 

Chang et 
al. 2019 

MR Coronal 260 ACL 

Visual 
inspection by 

a board-
certified 

subspecialist 

2 CNN 
ResNet-

Derived, U-
net 

160 
40/5-fold 

cross-
validation 

60 0.967/0.971 
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MSK 
radiologist 

Bien et al. 
2018 

MR 
Sagittal, 
Coronal, 

Axial 
1,370 ACL 

Three MSK 
radiologists’ 

majority 
vote, average 

12 years in 
practice 

3 CNN 
AlexNet, 
MRNet 

1,130 120 120 

Model ACL tear: 0.867 
[95%CI 0.794, 0.916]/ 
0.965 [95% CI 0.938, 

0.993] 
 

Model abnormality 
detection: NA/0.937 
[95%CI 0.895,0.980] 

 
Abdullah 

et al. 2013 
MR Sagittal 90 ACL NA 3 

BP ANN, k-
NN 

NA 72 
NA/5-fold 
and 6-fold 

18 
BP ANN: 0.9444/NA 
k-NN: 0.878333/NA 

Liu et al. 
2019 

MR Sagittal 350 ACL 

Orthopedic 
Surgeon + 
Fellowship 

trained MSK 
radiologist 
with >15 
years of 
clinical 

experience 

2 CNN 

LeNet-5, 
YOLO, 

DenseNet, 
VGG16, 
AlexNet 

200 
(57%) 

50 (14%) 
100 

(29%) 
NA/0.98 (DenseNet 95% 

CI (0.93-1.0) p<0.001 

MR, magnetic resonance; NA, not available; ACL, anterior cruciate ligament; CNN, convolutional neural network; ANN, artificial 513 
neural network; BP, back-propagation; k-NN, K-nearest neighbors; RF, random forest; HOG, histogram of oriented gradients; GIST, 514 
generalized search tree; rbf, radial basis function; MSK, musculoskeletal; YOLO, you only look once; VGG, visual graphics group (type 515 
of neural network architecture); AUC, area under the curve; AI, artificial intelligence. 516 
 517 

 518 
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Table 2. Artificial Intelligence and Methodology for Meniscus Studies 519 

Study Input 
Features 

Imaging 
plane 

Dataset 
size 

Anatomic 
location 

Ground truth label 
assignment 

Output 
classes 

Al 
models 

Pretrained 
CNN 

Size 
training 

set 

Size validation 
set/validation 

method 

Size 
test set 

Performance 
(accuracy/AUC) 

Pedoia et 
al. 2018 MR Sagittal 1,478 Meniscus 

Expert 1: >20 years 
experience, Expert 

2: >10 years 
experience, Expert 
3: <1 year training 

as a radiologist 2 

2D U-
Net, 3D 

CNN NA 
960 

(65%) 295 (20%) 
221 

(15%) 
Binary mode (lesion vs 
non-lesion): NA/0.89 

 
MR Sagittal 1,478 Meniscus 

Expert 1: >20 years 
experience, Expert 

2: >10 years 
experience, Expert 
3: <1 year training 

as a radiologist 3 

2D U-
Net, 3D 
CNN, RF NA 

960 
(65%) 295 (20%) 

221 
(15%) 

 (no lesion, mild-
moderate lesion, 

severe lesion): 
80.74%/NA, 
78.02%/NA, 
75.00%/NA  

Fazel-
Zarandi et 
al. 2016 MR Sagittal 248 Meniscus NA 2 

IT2FCM, 
IT2PCM, 

PNN NA 
198 

(80%) NA 
50 

(20%) 

0 and 1 mode: 90%/NA 
Binary mode:  

78%/NA 

Couteaux 
et al. 2019 MR Sagittal 1,128 Meniscus NA 6 

R-CNN, 
ConvNet 

ResNet-
101, 

ConvNet, 
R-CNN 246 54 700 NA/0.906 

Fu et al. 
2013 MR Sagittal 166 Meniscus NA 2 SVM NA NA 5-FCA NA 

SVM model: NA/0.727 
SFFS+SVM: NA/0.912 

Roblot et 
al. 2019 MR Sagittal 2,246 Meniscus CSV file 6 

Fast 
RCNN, 
Faster 
RCNN NA 1,123 NA 700 NA/0.90 

Bien et al. 
2018 

MR 
Sagittal, 
Coronal, 

Axial 
1,370 Meniscus 

Three MSK 
radiologists’ 

majority vote, 
average 12 years in 

practice on an 
internal validation 
set of 120 exams 

3 CNN 
AlexNet, 
MRNet 

1,130 120 120 Model Meniscal tear: 
0.725 [95%CI 0.639, 
0.797]/0.847 (95% CI 

0.780-0.914);  

             MR, magnetic resonance; NA, not available; 2D, two-dimensional; 3D, three-dimensional; CNN, convolutional neural network; R-520 
CNN, regions with CNN; SVM, support vector machine; IT2FCM, Interval type-2 fuzzy c-means; PNN, probabilistic neural network; 521 
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SFSS, sequential floating forward selection; AI, artificial intelligence; AUC, area under the curve; MSK, musculoskeletal; CSV, comma-522 
separated values. 523 
 524 
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Table 3. Quality appraisal of included studies. 525 
Study Quality Appraisal Score 
Abdullah et al. 2013 4 – Failure to describe both inclusion/exclusion criteria of input features 

and ground truth assignment 
Fu et al. 2013 3 – Failure to describe inclusion/exclusion criteria of input features, 

ground truth assignment, and distribution of data 
Fazel-Zarandi et al. 2016 4 – Failure to describe ground truth assignment and distribution of data 
Mazlan et al. 2017 6  
Štadjuhar et al. 2017 5 – Failure to describe distribution of data 
Bien et al. 2018 5 – Failure to describe inclusion/exclusion criteria of input features 
Pedoia et al. 2018 6 
Chang et al. 2019 6 

Couteaux et al. 2019 
4 – Failure to describe inclusion/exclusion criteria of input features and 

ground truth assignment 
Liu et al. 2019 6 
Roblot et al. 2019 5 – Failure to describe inclusion/exclusion criteria of input features 

 526 
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